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Summary. SPINS represents a collection of algorithms intended to provide an 
efficient, robust and easy-to-use quantum-chemical toolbox capable of performing 
a wide range of operations on spin eigenfunctions in the Ruiner, Kotani and Serber 
spin bases. It includes routines for symbolic generation of the Rumer spin eigenfunc- 
tions as linear combinations of elementary spin products, for computing all trans- 
formation matrices relating the Ruiner, Kotani and Serber spin bases and for 
calculation of the matrices of the irreducible representations of the symmetric group 
carried by the Rumer, Kotani and Serber spin eigenfunctions, as well as facilities for 
interpreting general spin-coupling patterns such as those used in spin-coupled 
theory. The resulting codes, written in Fortran-77 and available on the Internet (from 
P.B.Karadakov@Bristol .AC.UK or  DLC@Liverpool.AC.UK) are so compact 
and efficient that they even run on IBM PC-compatible personal computers. 
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1 Introduction 

Efficient tools for generating and manipulating many-electron spin eigenfunctions 
are of primary importance to quantum chemistry: The design of the trial wavefunc- 
tion in any approach which makes use of spin-adapted configuration state func- 
tions (CSFs) such as, for example, valence bond (VB) [-1], spin-coupled (SC) [,2], 
generalized VB (GVB) [,3], configuration interaction (CI) [4], multiconfiguration 
self-consistent field (MC SCF) [,5], complete-active-space SCF (CAS SCF) [6], 
requires spin eigenfunctions involving all, or a selected (active) group of the 
electrons in the system under investigation. 

The literature related to the construction of many-electron spin eigenfunctions 
is extensive. A comprehensive account of its various aspects and a list of further 
references can be found in the monograph by Pauncz [-7]. 

It is usual to denote N-electron spin eigenfunctions by O N • SM;k. 

fe2OUSU;k = S(S + 1)OsNU;k; (1) 

~ O~g;k = MOf~t;k, (2) 



52 P.B. Karadakov et al. 

where ~ 2  and 6~ are the operators for the total spin of the system and its 
z-projection, respectively (in units of h). The index k distinguishes between different 
spin functions corresponding to the same pair of S, M values. Their total number is 
given by 

(2S + 1)N! 
f f  = (½N + S + 1)! (½N -- S)!" (3) 

The linearly independent set {OSNM;k [ k = 1, 2 ... .  ,fs N } forms a complete spin basis, 
i.e. any other N-electron spin eigenfunction characterized by the same S and 
M values can be expanded as 

O N su  = Z CSkOfM;k = ONsuCs, (4) 
k = l  

where OsNu and Cs denote a row vector of all spin functions and a column vector of 
all spin-coupling coefficients, respectively. 

It is sufficient to have the spin eigenfunctions O N SM;k for only one value of M: 
often a convenient choice is the principal case M = S. Spin eigenfunctions, corres- 
ponding to other values of M can be obtained by application of the step-up and 
step-down operators g +  = 6~ + igy and 6"_ = ~x - i 6 ~ :  

_ 1 ~ ' 1 1 / 2 / ~ N  ff+OsNv~ = [-(S M ) ( S  + M + ~m vs ,  M+l, 
= _ nl I/2,~N (5) g-OSNM [(S + M ) ( S  M + ,Ja v s , M - 1 .  

The set {OsNM} provides a basis for an fs~-dimensional irreducible representa- 
tion of the symmetric (or permutation) group of N! permutations baN: If # is any 
permutation acting on the electron spin coordinates 

Pl P2 "'" PN (6) 

then 

R 
N ~ ~ ON VN ~Os~;k ~ = (7) = Os~;l[,Vs (~)]tk [ sM s (~)]k. 

/ = 1  

Obviously, knowledge of thefs N spin functions N OSM;k is sufficient to generate all N! 
representation matrices VsN(~). Conversely, it is possible to obtain a complete spin 
basis for an irreducible representation of 6aN (using group-theory projection oper- 
ators), if all representation matrices are available. 

Quantum-chemical approaches, which represent the trial wavefunction in 
terms of Slater determinants, make use mainly of the expansions of the many- 
electron spin eigenfunctions N OSM;k as linear combinations of products of one- 
electron ~ and fl spin functions. Methods operating in terms of CSFs usually do not 
require the spin functions explicitly: the corresponding expressions for overlaps or 
matrix elements of many-electron operators between CSFs involve all or some of 
the representation matrices [VsN(N), or those of the related dual representation 
OsN(#) = ~ s N ( ~  - 1), where e.~ = + 1, depending on the parity o f ~  and Vs~(# °- 1) 
denotes the transpose of VsN(~- 1)] within a particular spin basis. 

The most commonly used complete sets of spin functions are the Rumer [-8], 
Kotani et al. [9] and Serber [113, 11] spin bases. Further in this text we shall denote 
them as {ROsNM}, {KOs~M} and {SOsNM}, respectively. The methods for constructing 
these spin bases are all of the synthetic type, i.e. the full set of N-electron spin 
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functions is built up consecutively from smaller units (one and two-electron spin 
functions). As an alternative, spin eigenfunctions can be obtained by projecting out 
the components with the required values of S and M from an arbitrary spin 
function. Such approaches are known as analytic; the most important of these is 
due to L6wdin [12, 13]. 

Spin-coupled theory [14] makes a particularly creative use of different spin 
bases. It employs the most general wavefunction based on a single orbital product: 

~'JSM = ~ ( O l  I//2 "'" I / INONsM) ,  (8) 

where f f  stands for the antisymmetrizer, ~1, ~¢2, " " ,  ~tN are singly-occupied nonor- 
thogonal orbitals (approximated by expansions in a suitable basis of atom-centered 

OSM is an N-electron spin eigenfunction in the form of Eq. (4). The functions) and u 
optimal ~1, ~02, ~9 n and O N . . . ,  su  are determined variationally [15-17]. The inter- 
pretation of the spin-coupling pattern within the SC wavefunction (8) [expressed 
by the values of the spin-coupling coefficients CSk, see Eq. (4)] can be often 
considerably facilitated and enriched by altering the spin basis [18]: generally, 
different spin bases emphasize different features of the optimal spin arrangement. 
In order to achieve this, it is necessary to have fast and convenient procedures for 
transforming between the representations of O Nsu in the most important spin bases, 
involving at least those due to Rumer, Kotani and Serber: 

O N KOfuKC s RoN R C SON s C 
S M  = = S M  S = S M  S" (9) 

In the present article we describe SPINS: A collection of algorithms intended to 
provide a fast, versatile and easy-to-use quantum-chemical toolbox capable of 
performing a wide range of operations involving spin eigenfunctions from the 
Rumer, Kotani and Serber spin bases. SPINS includes routines for: 

(a) generation of the expansions of the complete set of Rumer spin functions 
{ROfM } for a system of N electrons with spin S (if N is even, S can take integer 
values between 0 and N/2, and ifN is odd - half-integer values between 1/2 and 
N/2) in terms of N-electron ~ and fl spin products; 

(b) calculation of the transformation matrices RKTsN and KSTsN relating the Rumer 
spin basis to the Kotani spin basis {KOsUu} and {KONsM} to the Serber spin basis, 
respectively: 

RI~N RKTN KO/V (10) 
~ ' S M  S = S M ,  

KONsM KSTNs = SONsM ; (11) 

(c) calculation of the matrices of the irreducible representations of 5°N formed by 
the Rumer spin basis [RvsN(~), cf. Eq, (7)]. 

Given the results of these routines, it is straightforward to obtain additional 
quantities, such as the Kotani-to-Rumer and Serber-to-Kotani transformation 
matrices: 

KRT~ = (RKTff)- 1, (12) 

S~'T# = KS'~s~ (13) 
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(the Rumer spin basis is nonorthogonal, while both the Kotani and Serber spin 
bases are orthogonal), as well as the matrices of the irreducible representations of 
teN in the Kotani and Serber spin bases: 

KV~(,~) = KP-TNRIINr,,~'~RI{'lrN (14) 

svsN(~ ) S~TNKVN"~KSrN 
= S S ~o, 1 ~ S  • (15) 

The algorithms making up SPINS are based mainly on existing theoretical 
material. The most important new element is in the compact non-trivial yet 
transparent realization of those ideas from the theory of many-electron spin 
functions, which lend themselves most readily to algorithmization for use in 
computer programs. This, in combination with the bit-wise packing of spin prod- 
ucts we introduce, leads to highly efficient and reliable codes. 

2 Construct ion of  the R u m e r  spin basis 

The Rumer spin basis represents a set offs N linearly independent spin functions, 
in which N - 2S electrons form singlet pairs, and the remaining 2S electrons are 
assigned spins ~ (M = S): 

R N OSM;k = 2 -  1/2 [0~(~1)j~(]22) - -  0~(~2).~(#1) ] ... 2 -  1/2[0~(~N-2S- 1)j~(,U N-  2S) 

- -  O ~ ( 1 2 N - - 2 S ) ~ ( l d N - - 2 S - 1 ) ] ~ ( / ' / N - 2 S +  1 )  " ' "  0~ ( ,UN) -  (16) 

Convenient extended labels for these spin functions are provided by the lists of 
singlet pairs within each one of them: 

k ~ "  ( ] ' / 1  - -  / " /2 ,  123 - -  /'24., " " ,  I ' l N - 2 S - 1  - -  I ~ N - 2 S )  • (17) 

The number of spin eigenfunctions which can be formed according to Eq. (16) 
(Vs N) is much larger than fsN: 

N~ 
v~ = 2Np( N _ 2%)! No! (18) 

where Np = ½N -- S stands for the number of singlet pairs within each Rumer spin 
function (16). However, onlyfs N of these Rumer functions are linearly independent. 
One way of obtainingfs N linearly independent RON is to apply the diagrammatic SM; k 

technique suggested by Ruiner [8] and extended by Simonetta et al. [19] to 
nonsinglet states. Another possibility, implemented in SPINS, is to use the leading 
term method [19] which is equivalent to the procedures for constructing bonded 
functions [4, 20-22]. 

The first step in this approach is to constructfs u leading terms Ofa;L1 (M = S). 
Each of these represents an ordered product of ½N + Se and ½N -- Sfl spin 
functions. N OM; 1, 1 always involves ½N -- S ~/3 pairs, followed by 2S e functions: 

O~;x,x = ~(1)/~(2) .., ~(N -- 28 -- 1)fl(N -- 2S)g(N -- 2S + 1) ... o~(N) 

= e/~otfl ... eft eo~ ... e. (19) 

1 / 2 N - S p a i r s  2S 
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N 1), is obtained from its predecessor, N The ith leading term, 0M;i,1 (i > 0u;i-l ,1,  by 
shifting one place to the right the first//(reading from left to right) followed by an ~, 
and then bringing all ]~ functions to the left of the shifted one to the positions they 
held in N OM; 1, 1 • 

In the next step, the leading terms are used to obtain a corresponding number 
of Rumer functions as follows: In each leading term, a left parenthesis is inserted 
before every ~, and a right parenthesis - after every fl (reading from left to right), 
then a singlet pair is associated with each combination of ct and fl functions 
enclosed in matching left and right parentheses. 

As an example, below we list the leading terms and the resulting Rumer spin 
functions for N --- 5, S = ½ (fi5/2 = 5): 

0 5 / 2 ;  1,1 ~-  tX]~(Xfl(X - '~  R~)15/2 1/2;1 : (O~fl) ( ~ f l )  (0C ~ (1 - 2 ,  3 - 4 ) ,  

05/2 ,2 ,~  ~1~1~ " 5 = __, 0 1 / 2 1 / 2 , 2 = ( c ~ ( c t f l ) f l ) ( ~ = _ ( 1 - 4 , 2 - 3 ) ,  

0~/2; 3,1 = ~/~c~fl--* RO~/2 I/2; 3 = (~/Y) (C~(CqY) --= (1 -- 2, 4 -- 5), 

0 5 / 2 ; 4 , 1  = O~O~flO~fl --+ R ~ ) 1 5 / 2 1 / 2 ; 4  = (O~(C(fl)(O~fl) =-- (2 - 3,4 - 5 ) ,  

05/2 ; = O~O~O~flfl__) R 5 5,1 0 1 / 2 1 / 2 ; 5  = (C~(C~(~fl)fl) = (2  - -  5, 3 - -  4).  (20 )  

SPINS generates the leading terms by means of the following code fragment 
(part of subroutine Ioaclt; this fragment, as well as the whole program, are written 
in Fortran-77): 

i fns = 1 
30 i =  i ndex ( I t ( i f ns ) ( l  : n), 'ba') 

i f  (i.ne.O) then 
i fns = i fns + 1 
I t ( i fns)  = I t O f n s -  1) 
I t ( i fns)  O : i  + 1) = 'ab' 

nbe ta  = 0 
do 4 O k =  I, i - 1  

i f  ( I t ( i fns) (k :k) .eq.  'b') nbeta  = nbeta  + 1 

40 cont inue 
if (nbeta.gt.O) then 

I t ( i fns) ( 1 : 2 ~ n b e t a )  = I t ( l )  ( 1 : 2  ~nbeta)  
do 50 j =  2 , nbeta  + I, i -  I 

50 I t  ( i fns) ( j : j )  = 'a' 
end i f  
go to 30 

end i f  (21) 

The leading terms are recorded in the firstfs s elements of the character array It, as 
strings of N 'a' and 'b' characters, representing e and fl functions,/espectively. The 
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first leading term is expected to have been initialized according to Eq. (19). The 
number of ~ functions preceding the shifted/~ in the current leading term lit(i)] is 
accumulated in nbota. In addition to producing all leading terms, code segment 
(21) calculates fs n (given by the final value of the counter ifns). 

The insertion of parentheses to form Rumer spin functions from the leading 
terms is achieved as follows (excerpt from subroutine fpairs): 

do 30 I =  1, ifns 
k = l  
kunp = 2 ,npa i rs  
do 2 0 i = 1 ,  n 

if (It(I) d : i ) .  eq. 'a') then 
leftp= o 
do l O j =  i + 1, n 

if ( I t ( I ) ( j : j ) .eq.  'a') then 
leftp=leftp+ 1 

elseif fit(I) ( j : j ) .  eq. 'b') then 
if (leftp. gt .  O) then 

leftp -- leftp - I 
else 

rf(k, I ) =  i 
rf(k+ 1 ,0= j  
k = k + 2  
go to 20 

endif 

endif 
10 continue 

kunp = kunp + 1 
rf(kunp, I ) =  i 

endif 
20 continue 
30 continue (22) 

The Rumer spin functions are stored in the two-dimensional integer array rf." the 
code shown above fills each of the firstfs u (ifns)u columns of rfwith the numbers 
pl, #z, ...,/~N, defining the Rumer function ROsM;k [see Eq: (16)]. Although it is 
sufficient to keep track only of the singlet pairs in each R6)S'~;k, according to Eq. 
(17) (i.e. the ordered sequence/~1,/~2, . . . ,  #N-2s), we find it convenient to record 
the indices of the unpaired electrons as well, which facilitates a subsequent expan- 
sion of each Rumer function in terms of products of ~ and/~ functions, npairs 
stands for the number of singlet pairs in every Rumer spin function, Np, while k 
and koup index successive locations in the "paired" and "unpaired" parts of the 
current Ruiner spin function. The counter leftp accumulates the number of 
unmatched left parentheses, starting from position i in the current leading term, 
and proceeding to the right. If leftp becomes equal to zero at position ], then i and 
j are singlet paired, otherwise i is unpaired. 
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The representation matrix RvN(~) ,  corresponding to a permutation N can be 
obtained as [cf. Eq. (7)] 

RoN X $ - I / R o N  I~RO~M), RVSN(~) = ((ROsNMI s~,'J \ sM (23) 

where (ROsN M I ROSNM) and ( R o N  M ] ~RONM) denote the fs  N ×fff overlap matrices 
with elements \/l~OnsM;k I rtOnsu;l/" and (RONM.kI~RONM. l ,  , ), respectively. One way of 
evaluating overlap integrals between Ruiner functions has been suggested by 
Cooper and McWeeny [22-1. We have adopted a less elegant but, nonetheless, very 
efficient direct approach employing the expansion of each go  n in terms of 2 n, SM;k 
products of a and fl spin functions: 

RONsM;k = 2-n~/2(1 - -  ~ 1 2 ) ( 1  - -  ~ 3 4 )  " ' "  (1 - ~2Np-1,2Np)ON;k, 1 

2 ~ 
l~a"0 n (24) = 2  -u"/~ F, ( -  , u;k,. 

r= l  

which entails evaluation of overlaps between spin products: N n (OM;k, r [ and 0M;k,~ ) 
N #v (0M;k,, l~O~;k,~). Here ~ denotes the single transposition (~ u) and 2, stands 

n for the number of single transpositions transforming the leading term OM;k, 1 
into spin product O N The calculation of the overlaps n O N (0M;k,r [ M;k,s) and M;k,r" 
(O~.k,  l :O~.k  s) requires just the comparison of the data representations of 
0g;ki,' and 0~ik, s, 0g:k,, and : - lO~;k , , ,  respectively, where : is a permutation 
defined analogously to : ,  but acting on the spin function symbols a and fl (it is easy 
to verify that : = : -  1). Here we assume that the code uses consistently identical 
data representations for all n 1 N 0M;k,~ and ~ -  OM;k,r throughout. 

In an initial version of the program, following the conventions adopted for 
leading terms [see code fragment (21)], we employed strings of'a '  and 'b' characters 
to record all required ~ OM;k,, However, use of a whole byte (that is the amount of 
memory usually occupied by a single character) to hold a one-electron spin 
function, which can take one of only two values (e and t)  is certainly excessive. It is 
much more efficient and economical to represent a and fl functions as unset and set 
bits, respectively. Thus, a standard four-byte integer variable can hold a product of 
up to 4 x 8 = 32 spin functions. In fact, as bit fields are conventionally indexed 
starting from the least-significant bit, which is assigned an index of 0, we have 
found it convenient to record a spin product in bits 1 to 31 (reading from the 
least-significant bit, i.e. from the right-hand side of the 32-bit field), which allows 
treatment of systems containing up to 31 electrons. This is more than sufficient for 
most practical purposes. For  example, the binary representations of the leading 
terms from Eq. (20), and the corresponding decimal integer numbers are obtained 
as (only the underlined five bits from each bit field are affected) 

0~/2;1, 1 : ~fl~fl~'-)O0000000 00000000 00000000 00010100 : 20, 

0~/2;2,1 = aaflfla ~00000000 00000000 00000000 00011000 = 24, 

0~/2;3,1 = aflaafl~O0000000 00000000 00000000 00100100= 36, 

0~/2;4,1 = aaflotfl -~ 00000000 00000000 00000000 00101000 = 40, 

0~/2; 5,1 = aaaflfl ~ 00000000 00000000 00000000 00110000 = 48, (25) 
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We have found that utilization of bit-coded spin products, instead of character 
strings, speeds up SPINS by approximately a factor of five on all platforms which 
have been used to run the program. 

It is most straightforward to explain the algorithm for expanding a Rumer spin 
function (16) in terms of spin products implemented in SPINS on a particular 
example. Let us consider one of the singlet Rumer spin functions for a system of 
6 electrons (note the use of curly braces to indicate grouping; for convenience, we 
have omitted the normalization constant): 

R 6 
Ooo;~ = D(u , ) /~ (m)  - / ~ ( u , ) ~ ( u ~ ) ]  { [~(m) /~(m)  - / ~ ( m ) ~ ( m ) ]  

X { [-~(]AS)~(]A6) - -  ~(125 )0~ ( ]A6 )  ] } }. 

Observing the usual rules of precedence, this spin function can be expanded as 
a sum of spin products: 

where 

Og;k, 1 

0g;~,2  - -  

¢o; ~, 3 - -  

0~o~,~ = 

Og;~,5 = 

06o~k,6 = 
06;k, 7 = 

Og;k, 8 = 

R 6 6 6 6 
O 0 0 ; k  = O0;k, 1 + O0;k,2 -~ . . .  -[- O0;k,8,  

~(~)/~(u~) 

~(u~)/~(u~) 

~(u~)/~(~) 

E - /~(~l)~(m)] 

E - ~ ( ~ ) ~ ( m ) ]  

E -/~(m)~(m)] ~, 
I 

E -/~(~)~(m)3, 

[ - /~(m)~(m)]  

[ - /~(m)~(m)]  

~(m)/~(m) ', 

[ - Nm)~(m)]', 
I 

[ - /~(m)~(m)]  I 

0~(//5)fl(#6) 

]- __ fl(~5)0~(]26)'] 

"(~5)fl(~6) 

I- - - / ~ ( m ) . ( m ) ]  

.(m)/~(,6) 

i- - / ~ ( m ) . ( m ) ]  

~(m)/~(u6) 

[ - /~(m)~(m)]  

On inspection of the three vertical columns formed by ~/~ and - / 3 e  factors from 
all eight spin products, it is easy to notice that the first column (arising from the 
expansion of the first singlet pair in the original Rumer spin function) contains four 
e(/~l)/~(#z) factors, followed by four - / ~ ( # 0 e ( # 2 )  factors (reading from the top to 
the bottom). The second column (arising from the expansion of the second singlet 
pair in the original Rumer spin function) involves a pattern of two e(/~3)/~(#4) 
factors, followed by two -/~(/~3)e(/~4) factors, which is repeated twice. The third 
column exhibits a pattern of one e(ps)/3(/z6) factor, followed by one - /~(#6)e(#5) 
factor and repeated four times. 

This can be easily generalized to the expansion of a Rumer function including 
Np pairs, assuming that the spin products are arranged similarly to the preceding 
6-electron example: Then the first column contains 2 Np-~ e(#1)/~(/~2) factors, 
followed by the same number of - ~(lq)~(P2) factors, while column i v (arising 
from pair ip in the original Rumer spin function 1 ~< i v <~ Np) involves a pattern of 
2 Np-;p ~(Pzl,-1)fl(/~2ip) factors, followed by the same number of - f l (Pz i~- l )  
e(/~21p) factors and repeated 2 ~,- 1 times. 

It is convenient to obtain the expansion of a Rumer function in terms of spin 
products by filling sequentially the vertical columns arising from different singlet 
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pairs. SPINS uses the following code to achieve this (excerpt from subroutine 
f de te r ) :  

do 40 I =  1, in fs  
do 5 i =  1, nde t  

rs( i ,  I ) =  I 
rd( i ,  I )  = 0 

5 continue 
do 30 i p a i r =  1, npa i rs  

ip  = r f (2  . i p a i r -  I, I) 
j p  = r f (2  . i pa i r ,  I) 
Ipar t  = 2 * *  (npa i rs  - ipa i r )  

do 20 j =  1, 2 * * ( i p a i r -  1) 
j o f f s  = ( j  - I)  . 2  . I p a r t  
do 10 k = j o f f s  + 1, j o f f s  + Ipar t  

rd(k,  I)  = ibse t ( rd (k ,  I), j p )  
k ip  = k + Ipar t  
rd(k lp ,  I) = ibse t ( rd (k lp ,  I), ip)  
rs(k lp,  I) = - rs(k lp,  I) 

10 continue 
20 continue 
30 continue 
40 continue (26) 

The spin products are assembled in the two-dimensional integer array rd. Its indices 
(i,/) range through the 2 ~p (ndot) spin products within the expansion of a Rumer 
spin function and through al lf~ (ifns) Rumer spin functions, respectively. The signs 
of the spin products [( - 1) ~", see Eq. (24)] are recorded in the integer array rs. The 
variables corresponding to the quantities ip, Np, l~2ip-1 and p21, from the preceding 
discussion are ipair, npair, ip and ]p, respectively. Note that it is not necessary to do 
anything about the unpaired c~ spins: They are represented by unset bits, which is 
handed automatically by the initialization of the elements of rcl to zero. 

This concludes the construction of the Rumer spin basis. 

3 Kotani spin basis and its relation to the Rumer spin basis 

The set of Kotani spin functions {KogM} is generated by successive coupling of 
individual electron spins according to the rules for addition of angular momenta. 

K N Each OSM;k is uniquely defined by the sequence of partial resultant spins obtained 
after combining the spins of the first 1, 2, ..., N - 1 electrons, which can be used as 
an extended label for the spin function (it is not necessary to indicate SN since it 
coincides with the total spin S): 

k - (S1S2 ... Su- 1). (27) 

The gradual formation of all Kotani spin functions and the degeneracy of the 
individual spin states can be represented in graphical form by means of the Kotani 
branching diagram (see Fig. 1). This is a plot of the allowed values of the total spin 
S against the number of electrons N. One can associate with each function KONS~;k 
a particular path on the branching diagram which follows the arrows connecting 
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4 

7/2 

3 

5/2 

2 

3/2 

1 

1/2 

0 

1 2 3 4 5 6 7 8  

N 

Fig. 1. Kotani branching diagram 

the points (1, S0, (2, S2), ..., (N, S). The number of all possible paths is, of course, 
fs n, and it is easy to see that 

f N  N - 1  ..~ 4"N- I 
= f s +  1/2 d S - l / 2 .  (28) 

The branching diagram allows the introduction of an alternative notation 
for labeling the different ~:O N obtained by starting from the origin (0, 0) and SM;k~ 

recording the directions of all upward and downward arrows (say by a and b, 
respectively) leading to the desired (N, S), i.e. 

where 

k -~ (%ek~ .. .  % ) ,  (29) 

a if s . _ l < s . ;  

% = b if s/t_ 1 > s#. 

This notation can be used in order to establish an ordering of the Kotani spin 
functions according to the so-called las t - le t ter  s equence  [7]. Let the first non- 
identical letters in (Ck~Ck~ . . .  Ck~) and ( % %  ...  ctN), reading from right to left, be 
% and % .  (CklCk~ .. .  Ck,) is assumed to precede ( % %  ...  c, ,)  if % = b. For example, 
the five Kotani spin functions for N = 5, S = ½ are ordered as 

1 =- (aaabb),  2 - (aabab),  3 - (abaab),  4 - (aabba),  5 =- (ababa).  (30) 

Comparison of this example with Eq. (20) shows that the "branching-dia- 
gram-path" label for Kotani spin function k is equivalent to the expression for 
leading term f1~2 + 1 - k, except for the choice of letters. This holds for any 
allowed pair of N and S values. In fact, the algorithm for constructing leading 
terms, explained in Sect. 2, simply instructs one how to obtain all paths connecting 
the origin (0, 0) to a point (N, S) in an inverse last-letter ordering sequence using 

and fl in the place of a and b, respectively. 
As has been demonstrated by Simonetta et al. [10], there exists a simple 

relationship between the Rumer spin functions, constructed by means of the 
leading-term technique, and the Kotani spin functions, ordered in the last- 
letter sequence: Schmidt orthogonalization of RoN RoN R N SU:I, S~ t ;2 , ' " ,  Os~t;I~ yields 
K ~ N  K zL-~ N Rzs~N 

'.JSM;f~s, r J S M ; f ~ -  1 ~ • ". ~ tY]SM; 1 • 
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SPINS makes use of this relationship in order to calculate the Rumer-to- 
Kotani transformation matrix RKTsN [see Eq. (10)]: The Schmidt orthogonalization 
can be described by an upper-triangular matrix RK~ff 

k 
K N = R[j~N FR K'rN-I  (31) (~SM;f~s+ 1 -k E IJSM; IL Silk, 

/ = 1  

which gives the required RKTN upon reordering: 

[RKTsS]k I rRK~N1 N (32) L SJk, f~+l-l" 

As a consequence, RKTsS is also triangular, but its non-zero elements are on and 
above the (fs ~, 1)-(1,fs s) diagonal. In fact, SPINS uses and prints out (if requested) 
the upper-triangular matrix R~ZTsU. The Schmidt-orthogonalization code (subrou- 
tine rurnkot) is fairly standard and follows closely the algorithm outlined by 
Shavitt [4]. 

4 Serber spin basis and the Kotani-to-Serber transformation matrix 

The Serber spin functions s N OSM.k are assembled consecutively from all two-electron 
singlet and triplet wavefunctions (and, in the odd-electron case, the one-electron 
spin function for the last electron). The intermediate values of the total spin can be 
used again, similarly to the case of the Kotani spin basis, in order to derive 
a compact notation for the individual Serber spin functions: 

[ (~ S 1 2 S 3 4 - )$4 ;  $ 5 6 ) 8 6 ;  . . .  SN-2; SN-1,N) 
~ N/2- 1 

k I ( (  "'" ((slzs34)S4;s56)S6; ... SN-3;SN-z,N-1) SN-1; 1/2) 

for N even; 
(33) 

for N odd, 

where su_ 1.u may be 0 or 1 depending on the coupling of the spins of electrons 
/z and # - 1 (singlet or triplet, respectively). 

This particular approach to the construction of spin functions can be illustrated 
by means of a Serber branching diagram (see Fig. 2), conceived similarly to the 
Kotani branching diagram (see Fig. 1). A two-electron triplet state can be added to 

4 

7/2 

3 

5/2 

S 2 

3/21 
1 

x/2 i 
0 

. . . . .  7~ 

1 2 3 4 5 6 7 

N 

Fig. 2. Serber branching diagram 
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( N -  2, S) in one of three possible ways: These are denoted by an arrow arc 
pointing upwards from (N - 2, S) to (N, S + 1), an arrow arc pointing downwards 
from (N - 2, S) to ( N ,  S - 1) and a horizontal arrow pointing from (N -- 2, S) to 
(N ,  S), respectively (the arrows from the last two cases can be drawn only if S > 0 at 
N - 2). The addition of a two-electron singlet spin state to (N - 2, S) is marked by 
a dashed horizontal arrow pointing from (N - 2, S) to (N, S). The odd-electron spin 
states are connected to their even-electron precursors by upward and downward 
arrows, just as in the case of the Kotani branching diagram (Fig. 1); as Eq. (33) 
indicates, they represent termination points on the Serber branching diagram. For 
N even, the recursive relations involving the successive values offff  for the Serber 
spin basis take the form 

j" f~N+--12 q_ fsN--12 _1_ 2fsS-2 if S > 0; (34) 
fsN = ~ fss+l 2 + f s  N-2 if S = 0. 

The relation for N odd is identical to its counterpart in the Kotani spin basis [-see 
Eq. (4)]. 

The Serber spin functions, similarly to the Kotani spin functions, are uniquely 
defined by the different paths on the Serber branching diagram. These can be used 
again in order to devise an alternative classification scheme, in which the Serber 
spin functions for even-electron spin states are denoted by 

where 

k = (dkldk~ . . .  d k J ,  (35) 

t 
'A '  
'B '  

dk"= 'C' 

'O' 

if S u = S u_ 2 and s u_ 1, u = 0; 
if Su = S # -  2 -1- 1 ( S # - I ,  # = 1); 
if S, = S~-2 and s , - l ,u  = 1; 
if S, = S~-2 - 1 (s~-1,~ = 1). 

The odd-electron case can be dealt with by appending the symbol Ck~ [see Eq. (29)] 
to the above index, i.e. 

k =- (dkl,  dk~ . . .  dk . . . . .  ,2Ck~). (36) 

The distinctive feature of the Serber spin basis is that the representation 
matrices corresponding to the single interchanges ~12, N34, .. . ,  ~N- a,zv for even 
N, or NN-2,N-1 for odd N, are all diagonal: 

(37) 

Consequently, this is also known as the " ~ , _  1,u-diagonal basis". 
This property provides a convenient background for the development of 

algorithms for constructing the transformation matrix ~:STsS [-see Eq. (11)], which 
links the Kotani and Serber spin bases. Two algorithms of this type have been 
suggested by Pauncz [7] and by Raos et al. [-18]. In SPINS we have realized the 
first of these algorithms, which has been extended to handle systems containing an 
odd number of electrons. 

Let us start with the case when the number of electrons in the system N is even. 
Upon inspection of the Kotani branching diagram (see Fig. 1), it is easy to notice 
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that, if S > 0, there exist four different paths connecting the point (N, S) to its 
N - 2-electron precursors: (N -- 2, S + 1), (N - 2, S) and (N - 2, S - 1). The last 
two letters in the labels of the Kotani spin eigenfunctions realizing these paths [-see 
Eq. (29)] are bb, ab, ba and aa, respectively. If all Kotani spin eigenfunctions are 
ordered in the last-letter sequence, the functions whose labels end in bb, ab, ba and 
aa appear as separate subsequent subsets off~Yl2,fsN-2,fs ~-2  and f~_-i 2 functions, 
respectively. Using this convention, it can be shown that the representation matrix, 
corresponding to ~ _  1,N in the Kotani basis, has the following block form [7] 
(all blocks which are not shown explicitly, contain only zeros). 

W f ( ~ _  ~, ~) = - uls;-2 ] vlsf  -2 
(38) 

ns> ] 

where u = 1/(2S + 1), v = (1 - u2) 1/2 and If denotes a n f x f u n i t  matrix. 
It is straightforward to obtain the orthogonal matrix, which 

KVSN(~N-1,N) into diagonal form: 
brings 

~ w f ( ~ _  1,.) = 
xb,;_2 

(39) 

where x = [(S + 1)/(2S + 1)] 1/2 and y = (1 - x 2 )  1/2. The result is 

s t  N-1,NJ "S>'N-1 ,N)  Ws(~N-1,N)= - Is>21 Is~-21 
Is~:? I 

(40) 

As a direct consequence, if the row vector of Kotani spin functions KOnsM is 
KO~ KWNt~ ~ in each of the resulting spin eigenfunctions the transformed to s~ s t N- 1,N~, 

spins of the last two electrons will be combined with the preceding SN-2 values 
in a Serber-like fashion, i.e. simultaneously, as two-electron spin eigenfunctions, 
rather than consecutively, as individual one-electron spins. This can be expressed 
by replacing the last two letters in the branching-diagram symbols for Kotani spin 
functions (29) by one of the letters used within the branching-diagram symbols for 
Serber spin functions (35) as follows: 

ab ~ A, aa --+ B, ba ~ C, bb --+ D. (41) 
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Let us now suppose that we have already calculated the Kotani to Serber 
KSTU-Z KSTsU-Z and mSTsU2~. Then, bearing transformation matrices [see Eq. (11)] s+ t, 

in mind the foregoing discussion, KSTsU is given by 

"STsU = 

I KSTN_ z 
S + l  

KSTsN-2 
ICSTsN-z 

KSTN-2 S-I I 

xl:;- J yl:.-, 
- y i : ; -  ] xl: -2 

x'l's N-2 I yTsN-Z 
_ y T s  ~-2 xTs N-2 

(42) 

T~-~ I 

This expression enables recursive calculation of the Kotani-to-Serber transforma- 
tion matrix for systems containing an even number of electrons. Formally, so far we 
have been dealing with the case of S > 0. The treatment can be extended to include 
the S = 0 case in a straightforward manner, bearing in mind that the only (N - 2)- 
electron precursors to (N, 0) are (N -- 2, 1) and (N - 2, 0). As a result, the recursive 
relation producing KSToN takes the form 

) KSro -2 I , (43) 

i.e. no further transformation is necessary. It is also easy to arrive at a similar 
conclusion in the case when the number of electrons in the system is odd. Then 
KSTg is related to its predecessors through 

~STsN ----- ( [ KST~;-~/2 I, ) 
KSTN- 1 

S -  1/2 I 
(44) 

The appearance of Eqs. (42)-(44) suggests a recursive implementation. Al- 
though recursive functions and subroutines are beginning to make their way into 
Fortran, it is to be expected that, as a rule, a non-recursive algorithm would be 
more robust, as well as more efficient in terms of execution speed and memory 
requirements. A careful examination of Eqs. (42)-(44) shows that it is possible to 
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evaluate the Kotani-to-Serber transformation matrix without resorting to recur- 
sive programming. The resulting algorithm, which is implemented in SPINS, runs 
as follows (the corresponding Fortran code is included in subroutine kotsrb):  

(i) Derive the branching-diagram labels for  the Serber spin functions from those 
for  the Kotani  spin functions (ordered in the last-latter sequence) according to the 
correspondence rules in Eq. (41). 
(ii) Initialize KSTsU to Ifg. 

(iii) Initialize an array o f  partial spins sk(k = 1, 2, ... , is  s) as follows: 
Set Sk = 0 i f  the f irst  letter in the branching diagram label for  Serber func~ion k is A, 
otherwise set Sk = 1. 
(iv) For i = 2,3, . . . ,  N/2  [or (N -- 1)/2, i f  N is odd] do 

(iv.i) Update the partial spins Sk: 
i f  the ith letter in spin function k is B then set Sk = Sk + 1, else i f  the ith letter is D then 
set Sk = Sk -- 1, otherwise leave sk unchanged. 

(iv.ii) For each region of  equal partial spins sj = si+l . . . . .  sj+,j-1 within 
sa, Sa, . . . ,  sfg, where nj > 1 do 

(iv.ii.i) Search through spin functions j, j + 1, . . .  , j  + nj - l for  a subgroup of  spin 
functions m, m + 1 , . . . ,  m + nm - 1, which contain A in position i and are fol lowed by 
an equal number (nm) o f  spin functions, which contain C in position i. I f  such a group is 
found then for  all k, l = m, m + 1 , . . . ,  m + n,, - 1 set 

[~STsN]k ~ x j rKsT~]k~,  rKSTN1 = = k "s  Jk,l+,m Yj[KSTsU]kl, 

[ K s T u 7  rKSl-U~ - s  Jk+,~,,l yjEKSTsS]u, -- xjEKSTsS]u, - -  L " S  J k + n m ,  l + n m  - -  

where xj = [(sj + 1)/(2s~ + 1)] 1/2 and yj  = (1 - xj)Z 1/2. 

This method of constructing the Kotani-to-Serber transformation matrix 
assumes that the Serber spin functions are ordered in the last-letter sequence 
similarly to the Kotani spin functions, which is ensured by the first step of the 
preceding algorithm. For example, the ordered branching-diagram labels for all 
five doublet Serber spin functions for a five-electron system can be obtained from 
their Kotani counterparts [see Eq. (30)] as 

1 =- (BAb), 2 - (BCb), 3 =- (ABb), 4 = (BDa), 5 =- (AAa). (45) 

A distinct advantage of the algorithm for calculating the Kotani-to-Serber 
transformation matrix presented in this Section over the approach suggested by 
Raos et al. [18], is in the fact that it does not involve any matrix diagonalizations, 
which makes the process faster and numerically more stable. 

5 Interpretation of spin-coupling patterns 

The analysis of a spin eigenfunction in its most general form [see Eq. (4)] can be 
a difficult task, especially when the dimension of the spin degeneracy (3) is large. 
Transformation to a spin basis which reflects properly the symmetry of the system 
under investigation often provides a much clearer picture which makes better 
physical sense. The corresponding change of the spin-coupling coefficients (Cs) can 
be expressed as 

RKT~VK C = SKTNKCs ' RCs = S S, SCs (46) 
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SPINS is capable of transforming a vector of spin-coupling coefficients, which 
defines a spin function (4) in the Rumer, Kotani or Serber spin basis, to the 
corresponding vector in any other of these bases. 

Another important point in the analysis of the representation of a spin function 
within a given spin basis is to establish the relative significance of the individual 
terms in expansion (4). One way of calculating the weight with which a single spin 
eigenfunction O N participates in N OsM (or, in other words, its occupation num- SM;k 
bet) is due to Chirgwin and Coulson [23] (it is assumed that OSSM is normalized 
to unity): 

yg 
Ps cc Csk ~ O N U = ( S~t;k [OsM;I) Csl. (47) 

l= l  

Computational experience shows that for nonorthogonal spin bases the values 
of psCk c calculated by means of Eq. (47) can sometimes be either larger than unity or 
negative. Another expression for Psi,  which guarantees that its value always stays 
within the range [0, 1], has been suggested by Gallup and Norbeck [24]: 

yg 
psGk N c r C  ~ 2 1 t / o N  I O N N -  1"~ - 1 = ~ Sk} / t k  SMI S M /  )kk, C ~--- E ( C s k ) 2 / ( ( O ~ M I O N s M > - I ) k k "  

k=l  
(48) 

In the Case of orthogonal spin bases (e.g. the Kotani and Serber spin bases) both 
Eqs. (47) and (48) reduce to much simpler expressions: ¢Psk = KC~k, Spsk = SC2sk. 

SPINS calculates and outputs occupation numbers for all components of each 
spin function it processes. Both Chirgwin-Coulson and Gallup-Norbeck occupa- 
tion numbers are evaluated for spin functions defined in the Rumer spin basis. 

It is often of interest in spin-coupled theory to establish the influence of 
a reordering of the spatial orbitals ~bl, ~b2, . . . ,  6N on the spin-coupling pattern 
within O NsM [see Eq. (8)]. If ~ is a permutation defined analogously to Eq. (6), but 
acting on the orbital indices, such that 

then it is easy to show that 

~ - -  1 9~(~t1@ 2 N .. .  o N  . . . .  . . .  ~ N O S M )  = /3~(¢11] /2  ~N SM) ~ ( ~ t l l / / 2  C N ~ -  IONM) • 

As a direct consequence of these equations, the spin-coupling pattern correspond- 
ing to the reordered product of spatial orbitals, is defined by 

Cs(~) = e~VsS(~ '-  a)Cs. (49) 

SPINS implements this expression and thus allows investigation of the effect of any 
permutation of the spatial orbitals ff~, 62, . . . ,  fin participating in the spin-coupled 
wavefunction on the form of the related spin function Oss~t, which can be expressed 
in the Rumer, Kotani or Serber spin basis [see Eq. (9)]. 

6 Program control and performance 

While developing SPINS, we had two objectives in mind: (i) to produce an efficient 
and well-documented set of small subroutines, which could later be incorporated in 
any program requiring spin eigenfunctions from the Rumer, Kotani or Serber spin 
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bases, the related transformation matrices, or the representation matrices of the 
symmetric group in these bases and (ii) to organize these routines in one program, 
which could be used directly to evaluate most of the expressions from the preceding 
Sections of this article. 

Here we describe the operation of SPINS as a standalone program. 
SPINS reads its input from Fortran unit 5 and writes its output to Fortran unit 

6. On Unix and MS DOS systems these are attached, by default, to the standard 
input and output file, which allows one to invoke the program simply as 

s p i n s  < i n p u t _ f i l e  > o u t p u t _ f i l e  

The input file may contain the following keywords: 

e l e c t r o n s  N 

This defines the number of electrons in the system (an integer value, currently from 
1 to 16, although the upper limit can be changed by a simple redimensioning of the 
arrays in the Fortran code); it should be the first directive in the command file. The 
e l e c t r o n s  keyword initiates work on a completely new task, i.e., if it is repeated, 
SPINS 'forgets' any information Which may have been supplied beforehand. 

sp in  S 

Defines the required value of the total spin S. S should be compatible with N, 
i.e. 0 <~ S <~ N/2 and can take integer or half-integer values when N is even or odd, 
respectively. If the s p i n  keyword is omitted, the default values of S, assumed by the 
program for N even or odd, are 0 (singlet) and 0.5 (doublet). The s p i n  keyword, 
similarly to the e l e c t r o n s  keyword, instructs SPINS to start a new task. The only 
difference is that is does not cancel a previously defined permutation (see the 
p e r m u t a t i o n  keyword). 

i n p u t  Rumer[Kotani[Serber[Rumer_VB Csl Cs2 ... Cs/g 

This defines an input vector of spin-coupling (Csk) coefficients coming from a spin 
function expanded in the Ruiner, Kotani or Serber spin basis [-here and further in 
the text alternatives are separated by a vertical bar ('[')]. Ruiner_ VB can be used to 
indicate that the input vector corresponds to Ruiner spin functions which have the 
phases defined as in Raimondi's VB program [25]. The name of the spin basis is 
expected to be followed b y f  u numbers, forming the input vector of spin-coupling 
coefficients. This input vector is renormalized and printed out, together with the 
spin-function designations from one of Eqs. (17), (27), or (33). Even if the input has 
Rumer_ VB phases, the output vector is of the standard Rumer type (i.e. the signs of 
the spin-factors corresponding to the leading terms are positive in all spin func- 
tions). Then, if a permutation has already been defined (see the p e r m u t a t i o n  
directive), the input vector is transformed so as to produce Cs(~) [see Eq. (49)], 
which replaces Cs. This means that any subsequent transformations of the spin- 
coupling coefficients will act on Cs(~). 



68 P.B. Karadakov et al. 

p e r m u t a t i o n  Pl P2 ... PN 

Defines the permutation 

1 2 ... N ) .  

Pl P2 "'" Ps 

If an input vector of spin-coupling coefficients has already been defined, it is 
transformed to Cs(~) [see Eq. (49) and the explanation following the i n p u t  
keyword]. The permutation stays in effect until the next e l ec t rons  or 
permutation keyword, if any, i.e. each new input vector of spin-coupling coeffic- 
ients will be transformed in an analogous way. Pl, P2, -. . ,  Pu should be unique 
integer numbers. 

t r a n s f o r m  Ruiner [ Kotani [ Serber 

Requests transformation of the vector of spin-coupling coefficients defined 
previously by an i n p u t  directive to the specified spin basis [see Eq. (46)]. Note that 
if the initial vector is in the Ruiner spin basis, then t r a n s f o r m  Kotani, followed by 
t r a n s f o r m  Serber produces the same final vector as t r a n s f o r m  Serber only. 

r e p r e s e n t a t i o n  Rumer [ Kotani [ Serber 

Requests calculation of the representation matrix VsN(~) [see Eq. (7)], which 
corresponds to a permutation N, defined previously by a p e r m u t a t i o n  keyword, 
in the specified spin basis. 

p r i n t  leading_terms[ Kotani_and_ Serber_paths [ Rumer functions [ 

Ruiner_overlaps[ transformations[ everything[ all 

Requests increased output detail, everything and all are synonyms. 
A line with a percentage sign (%) in the first position is considered to be 

a comment line and is copied directly to the output file. 
There are very few restrictions on the format of the input file. Keywords and 

numbers have to be separated by any non-zero number of blanks. A blank is 
considered to be one of the characters space (' '), comma (','), semicolumn (';'), 
slash ('/'), as well as the end-of-line separator. A keyword and its parameters may 
span several lines, and a single line may contain several keywords. Keywords may 
be specified in any mixture of upper and lower case. If it discovers a syntax error, 
the input parser outputs an appropriate message and terminates the execution of 
the program. 

An example input file and the resulting output file, both coming from spin- 
coupled investigations of the electronic structure of polyenyl radicals [26], are 
included in Appendix. 

The performance of SPINS can be judged from the following timings: In 
relation to a recent spin-coupled study of chemical bonding to hyperco- 
ordinate second-order atoms [27], we had to find the vectors of spin-coupling 
coefficients corresponding to reordered orbital products in the Rumer spin basis, 
and then to transform them from the Rumer to the Serber spin basis for two singlet 
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spin-coupled wavefunctions, involving 12 valence electrons each (fo12 = 132). 
The total CPU time SPINS took to process this task was 36 s on an IBM RS/6000 
model 530H (AIX 3.2.4, xlf 2.3.0) and 54 s on an IBM-compatible PC equipped 
with a 66 MHz 80486 processor (MS DOS 6.2, Microsoft Fortran Power Station 
1.0). Smaller problems run even faster, sometimes it may be even convenient to pipe 
the output of SPINS to more,  i.e. spins < input_f i le  I more.  

7 Concluding remarks 

The algorithms incorporated in SPINS present simple, effective and robust 
solutions to a number of problems associated with the use of Rumer, Kotani and 
Serber spin eigenfunctions in quantum chemistry. All related Fortran-77 sources, 
as well as assistance with their use, are available on the Internet from 
P. B. Karadakov@Bris to l .AC.UK or DLC@Liverpool.AC.IJK. The com- 
ments within the source code, together with the descriptions included in the present 
article should be sufficient to allow easy incorporation of any of the provided 
program units into another quantum-chemical package. 

As a standalone program. SPINS has already proven to be an essential tool for 
interpreting spin-coupled wavefunctions. Its recent applications include the com- 
parison of the bent-bond and a-re models for the carbon-carbon double and triple 
bonds in ethene and ethyne [28], the study of the lowest singlet and triplet states of 
o-benzyne [29], the spin-coupled description of the electronic structure of polyenyl 
radicals [26], the spin-coupled model for the mechanism of the ethene + ethene 
cycloaddition reaction [30], the description of chemical bonding to hyperco- 
ordinate second-row atoms [27], the comparison between the nature of 
carbon-carbon bonds in cyclopropane and cyclobutane and the question of 
a-aromaticity in cyclopropane [31]. 

Appendix 

The input and output files included here provide an example of the use of SPINS in 
order to achieve a VB-style interpretation of the spin-coupled results for CsH~, 
which form a part of a recent investigation of the electronic structure of polyenyl 
radicals [-26]. The spatial orbitals stemming from the spin-coupled calculation are 
of r~-symmetry and closely resemble distorted carbon 2pz atomic orbitals. However, 
they are not appropriately ordered (see the scheme below), and the optimized 
spin-coupling coefficients refer to the Kotani spin basis. The reordering of the 
orbitals 

5 1 4 1 3 5 

and subsequent transformations of the spin-coupling coefficients, first to the 
Rumer and then to the Serber spin basis, can be carried out by running SPINS on 
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the following input data: 

% 

% C5H7 (de fo rmed  A0s )  

% 

e lec t rons  5 sp in  0.5 

p e r m u t a t i o n  5 3 1 2 4 

inpu t  ko tan i  
0 . 4 0 7 2 9 3 4 3 7 7 ,  

- 0 . 5 3 0 0 2 7 4 5 1 7 ,  

t r a n s f o r m  r u i n e r  

t r a n s f o r m  s e r b e r  

P.B. Karadakovetal. 

0 . 0 9 9 8 9 5 2 7 4 4 ,  - 0 . 5 3 0 0 2 7 4 5 1 6 ,  
- 0 . 5 1 2 1 2 7 7 0 9 3 ,  

As a result, SPINS produces the following output  (timings refer to an IBM 
RS/6000 530H): 

% 

% C5H7 (de fo rmed  A0s )  

% 

S y s t e m  of 5 e lec t rons  wi th  sp in  1/2  (f^N_S = 5) 
Pe rmuta t ion :  

5 3 1 2 4 

I nve r se  pe rmu ta t i on :  

3 4 2 5 1 

Renorma l i zed  input  sp in  func t ion  coefficients  (Kotani  spin  bas is) :  

k Spin-Coupling p a t t e r n  Coefficient Weight  

1: ( ( 1 / 2 ) 1 ( 3 / 2 ) 1 )  0 . 4 0 7 2 9 3  0 .165888  
2: ( ( 1 / 2 ) 1 ( 1 / 2 ) 1 )  0 .099895  0 . 0 0 9 9 7 9  
3: ( ( 1 / 2 ) 0 ( 1 / 2 )  1) - 0 .530027  0 . 2 8 0 9 2 9  
4: ( ( 1 / 2 ) 1 ( 1 / 2 ) 0 )  - 0 .530027  0 . 2 8 0 9 2 9  
5: ( ( 1 / 2 ) 0 ( 1 / 2 ) 0 )  - 0 .512128  0 . 2 6 2 2 7 5  

P e r m u t e d  sp in  funct ion  coefficients  (Kotani  sp in  bas is ) :  

k Spin-Coupling p a t t e r n  Coefficient Weight  

1: ( ( 1 / 2 )  1 ( 3 / 2 ) 1 )  - - 0 . 0 4 1 5 8 2  0 .001729  
2: ( ( 1 / 2 )  1 ( 1 / 2 )  1) 0 .250368  0 .062684  
3: ( ( 1 / 2 )  0 ( 1 / 2 )  1) -- 0 .626405  0 .392383  
4: ( ( 1 / 2 )  1 ( 1 / 2 ) 0 )  - 0 . 1 7 8 5 0 2  0 .031863  
5: ( ( 1 / 2 )  0 ( 1 / 2 ) 0 )  0 .715081  0 .511341  
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K o t a n i  to  R u m e r  t r a n s f o r m a t i o n  

T r a n s f o r m e d  s p i n  f u n c t i o n  coe f f i c i en t s  ( R u m e r  s p i n  b a s i s ) :  

71 

k Sp in -Coup l ing  p a t t e r n  Coef f ic ien t  W e i g h t  GWeigh t  

1: (1 - 2, 3 - 4, 5) 0 . 2 9 4 6 2 0  0 . 2 1 0 6 7 7  0 . 1 3 8 8 3 9  
2: (1 - 4, 2 - 3, 5) - 0 . 0 5 8 8 0 6  0 . 0 3 0 1 1 6  0 . 0 0 7 3 7 5  
3: (1 - 2, 4 - 5, 3)  - 0 . 5 7 6 0 0 0  0 . 5 1 8 4 1 3  0 . 7 0 7 5 7 2  
4: (2  - 3, 4 - 5, 1) 0 . 2 9 4 6 2 0  0 . 2 1 0 6 7 7  0 . 1 3 8 8 3 9  
5: (2  - 5, 3 - 4, 1) - 0 . 0 5 8 8 0 6  0 . 0 3 0 1 1 6  0 . 0 0 7 3 7 5  

R u i n e r  to  S e r b e r  t r a n s f o r m a t i o n  

T r a n s f o r m e d  s p i n  f u n c t i o n  coe f f i c i en t s  ( S e r b e r  s p i n  ba s i s ) :  

k Sp in -Coup l ing  p a t t e r n  Coeff ic ien t  W e i g h t  

1: ( ( 1 0 ) 1 ; ( 1 / 2 ) )  0 . 1 7 8 5 0 2  0 . 0 3 1 8 6 3  
2: ( ( 1 1 ) 1 ; ( 1 / 2 ) )  0 . 1 8 0 4 1 7  0 . 0 3 2 5 5 0  
3: ( ( 0 1 )  1 ; ( 1 / 2 ) )  - 0 . 6 2 6 4 0 5  0 . 3 9 2 3 8 3  
4: ( ( 1 1 ) 0 ; ( 1 / 2 ) )  - 0 . 1 7 8 5 0 2  0 . 0 3 1 8 6 3  
5: ( ( 0 0 ) 0 ; ( 1 / 2 ) )  0 . 7 1 5 0 8 1  0 . 5 1 1 3 4 1  

U s e r  t ime :  0 . 0 8  s 
S y s t e m  t ime :  0 . 0 2  s 
To ta l  t ime :  0 . 1 0  s 

The  t r ans fo rmed  sp in-coupl ing  coefficients in the R u m e r  spin basis reveal  
a c lear  r e sonance  pat tern ,  d o m i n a t e d  by s tructures  involving spin funct ions 
3 - ( 1 - 2 , 4 - 5 , 3 ) ,  1 - - - ( 1 - 2 , 3 - 4 , 5 ) , 4 - ( 2 - 3 , 4 - 5 ,  1) (the last  two have 
equal  weights due to the  symmet ry  of the system). 

Inse r t ion  of the ins t ruc t ion  p r i n t  l e a d i n g _ t e r m s  at  the beginning  of the 
i npu t  da t a  wou ld  resul t  in the add i t i on  of in fo rmat ion  a b o u t  the leading terms of 
the output :  

L e a d i n g  t e r m s  (VB s igns ) :  

1: a b a b a  ( -  1) 
2: a a b b a  ( 1) 
3: a b a a b  ( 1) 
4: a a b a b  ( - -  1) 
5: a a a b b  ( 1) 

The  ins t ruc t ion  p r i n t  r u i n e r _ f u n c t i o n s  would  p roduce  a deta i led p r in tou t  
of the R u m e r  spin basis  for the system: 

R u m e r  f u n c t i o n s  e x p a n d e d  i n  t e r m s  o f  s i g n e d  s p i n  f a c t o r s :  

Sp in  f u n c t i o n  1 
1: ( a b a b a )  2: -- ( a b b a a )  3: - ( b a a b a )  4: ( b a b a a )  

Sp in  f u n c t i o n  2 
1: ( a a b b a )  2: - ( a b a b a )  3: - ( b a b a a )  4: ( b b a a a )  

Sp in  f u n c t i o n  3 
1: ( a b a a b )  2: -- ( a b a b a )  3: - ( b a a a b )  4: ( b a a b a )  
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Sp in  f u n c t i o n  4 
1: ( a a b a b )  2: - ( a abba )  3: - ( a ba a b )  4: ( a ba ba )  

Sp in  f u n c t i o n  5 
1: ( a a a b b )  2: - ( a a b a b )  3: - ( a ba ba )  4: ( a bba a )  

The directives p r i n t  r u i n e r _ o v e r l a p s  and  p r i n t  t r a n s f o r m a t i o n s  would 
instruct  SPINS to include in the ou tpu t  the overlap matr ix  between Rumer  spin 
funct ions and  the Rumer - to -Kotan i ,  Ko tan i - t o -Rumer  and  Kotani - to-Serber  
t rans format ion  matrices, respectively. 

Finally,  the ins t ruc t ion  p r i n t  k o t a n i _ a n d _ s e r b e r _ p a t h s  would add to the 
ou tpu t  the correspondence between the paths on the Ko tan i  and Rumer  b ranch ing  
diagrams: 

K o t a n i  a n d  S e r b e r  s p i n  f u n c t i o n s - - - p a t h s  o n  t h e  b r a n c h i n g  
d i a g r a m s :  

k K o t a n i  Se rbe r  

1 : a a a b b  BAb 
2: a a b a b  BCb 
3: a b a a b  ABb 
4: a a b b a  BDa 
5: a b a b a  AAa 
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